SUPERVISORY CONTROL OF MALICIOUS EXECUTABLES'

V.V. Phoha$, Xin Xu
Louisiana Tech University
Ruston, LA 71272
$ Email: phoha@acm.org

A. Rayt, S. Phoha

The Pennsylvania State University
University Park, PA 16802

1 Email: axr2@psu.edu

Abstract: This paper presents a systems-theoretic approach to profile, model, and control
malicious executables in computer software. By treating the structural profile of
malicious codes as a generator of formal languages, the language recognizer serves as a
supervisory controller in the sense that the spread of malicious executables is arrested
with the goal of making the virus ineffective. The theoretical foundation and the approach
presented in this paper are applicable to a wide class of malicious executables. The
controller can be designed as a separate program or as a background process to run on
individual machines to monitor other processes. Simulation experiments on supervisory
control of a file virus are presented as examples. Copyright® 2003 IFAC

Keywords: Discrete event system, Supervisory control, Automata theory, Detection

systems, Software safety.

1. INTRODUCTION

Wide-spread connectivity provided by the Internet
and an increase in use of computers have lead to
development and rapid spread of malicious programs,
such as viruses, Trojan horses, and logic bombs. This
paper introduces a novel approach to control the
spread of viruses and presents a technique to make
them ineffective.

There are various approaches to detection and
prevention of virus spread. Currently, the signature-
based method is the most commonly used anti-virus
solution in industry (Sandeep and Eugene, 1992;
Matthew, et al., 2001). The signature-based method
relies on prior knowledge about the structural or
behavioral profile of a particular virus. This
knowledge can be a signature consisting of a unique
sequence of bytes at a known offset, or a special
system call, or a set of system calls made when the
virus is executing (Eugene, 1992). The shortcoming
of this method is that users need to update the tools
when a new virus comes out. Since about eight to ten
malicious programs are created every day, on the
average, and most of them cannot be detected until

signatures have been analyzed, the computer system
becomes vulnerable to attacks during this period
(Matthew, et al., 2001). Many researchers (Baudouin,
et al., 1995; Matthew, et al., 2001) are trying to
devise generic methods to detect new viruses. This
class of methods looks for virus-like behavior rather
than specific viruses and warns the user once a virus-
like behavior is detected.

The approach, introduced and adopted in the present
paper, models the virus-like behavior to develop
controllers that make viruses ineffective while the
software is in execution, and thus largely
complements the existing methods for virus
protection of software, which are essentially off-line.
We have applied discrete-event Supervisory Control
Theory (SCT) to detect and prevent the spread of
computer viruses where prior knowledge of the
specific virus signatures is not required. SCT is a
well-studied paradigm and has been used in many
applications. Examples are: software systems (Karsai,
et al, 2001), workflow management paradigm to

schedule concurrent tasks through scheduling
controllers (Wallace, et al,, 1996) as well as for
protocol converters to ensure consistent

TThis work has been supported in part by the Army Research Office under Grant No. DAAD19-01-1-0646.

1167

communications in heterogeneous network

environments (Kumar and Fabian, 1997).

From the perspectives of software operation and
control, we briefly review the relevant literature on
system call and state transition analysis. The idea of
tracing system calls has been extensively used for
intrusion detection (ID) by many researchers
(Christina, et al., 1999; Steven et al., 1998; Eleazar &
Wenke, 2001; Wenke & Salvatore 1998). Their work
shows that the use of system calls is critical to
appropriate usage of system resources. Those
methods monitor the system calls used by active,
privileged processes, such as sendmail and Ipr, and
then, distinguish the abnormal executions from the
normal ones.

Several researchers (Nuansri et al.,, 1999; Koral, et
al., 1995; Michael and Anup, 2000; Steven et al.,
2000) have developed ID techniques based on the
principle of state transition analysis to detect new
intrusions, but state transition analysis has been
seldom used for virus detection. To the knowledge
of authors, only Le Charlier et al. (1995) have used
state transition diagrams to represent infection
patterns for virus detection in the framework of rule-
based expert systems. They then, use the system to
detect virus behavior. The rules are generated by
collecting and analyzing the computer audit data. In
contrast, the virus ID system, proposed in this paper,
is built upon the principle of SCT in the framework
of state transition analysis to detect new malicious
executables. We use an MS-DOS trace tool
(Diomidis, 1994) to trace the normal and malicious
executables, and build state transition model based on
the trace results.

Preliminary results of simulation experiments show
that the ID system achieves a 75% virus detection
frequency. Higher values of frequency are anticipated
with further improvement of the event definition.
Novelties and significant contributions of the paper
are summarized below:

e A novel approach to detection and
prevention of the spread of new malicious
executables.

e Real-time detection of new malicious

executables.
e Modeling of system calls as events in the
formal language setting.

e Reliable and consistent protection of
software system and application processes.

This paper is organized in four sections including the
present section. Section 2 presents the underlying
theory of the proposed approach and formulates the
model based on this theory. Section 3 presents and
analyzes the simulation. Section 4 summarizes the

1168

paper and discusses future work in detection of
malicious executables.

2. BASIC THEORY AND MODEL
FORMULATION

This section introduces the basic theory of discrete-
event supervisory control and describes how to
formulate a model of malicious executables based on
this theory. Before proceeding to the core issue of
modeling and control, we briefly present a taxonomy
of computer viruses. There are three broad categories
of viruses (Alan and Tim, 1994; Richard, 1990) as
listed below:

e File viruses that infect *.exe and *.com files.

® Macro viruses that infect data files.

® Boot viruses that infect boot sectors of hard disk

or floppy disk.

The paper focuses on file virus but the underlying
concepts presented here are applicable to any class of
viruses.

2.1 Analysis of malicious executables

Generally, malicious executables contain a replicator
that controls the spread of the virus, a concealer that
keeps the virus from being detected, and a trigger
that activate the virus (Alan and Tim, 1994; Richard,
1990). The malicious functions of the virus may vary,
and their activation conditions may be different, but
the system calls made in the replication stage and the
infection stage are very similar. As an extension of
general virus behavior observed in virus (Alan and
Tim, 1994; Richard, 1990), we derive a general
outline of replication and infection of a file virus as
follows.

Procedure: Replication
while files available

{
find a file;
if file not infected
{Infection (filename),
infected file number ++,}
else do nothing;

}
Procedure: Infection (file)
{

Get the file attribute;

Change the file attribute;

Save the file data/time stamps;

Copy virus code to the file;

Restore the file attribute, date/time stamps;

}

This paper has used an MS-DOS trace tool
(Diomidis, 1994) to trace 25 non-infected programs,

and 30 malicious programs created by two virus
generation tools:
e BW (http://vx.netlux.org/dat/tb00.shtml)
o G2 (http://vx.netlux.org/dat/tg00.shtml).

The trace results verify the general outline given
above in procedures Replication and Infection. We
define a sensitive-sequence as a sequence of system
calls common to most virus programs. An analysis of
30 file virus programs and 25 non-infected programs
shows the following sensitive-sequence for file virus:
findfirst, getmod, chmod, open, get time, read,
[write, Iseek], set time, chmod, close. Note that
occurrence of write depends on whether the file is
infected or not; it may not appear if the file is already
infected. The order of the system calls may be
slightly different for each individual virus. For
example, open may happen anywhere between
findfirst and write. Since file viruses spread when the
virus code executes, all system calls of the program
are monitored in real time. If the system calls
generated by the program follows the sensitive-
sequence, it can be predicted with high confidence
that the program is either a virus or is infected by a
virus. An outline of the proposed approach follows.

We first model the process interactions as a
Deterministic Finite State Automaton (DFSA) and
enumerate its states and events that cause state
transitions. We map system calls into events. In
order to detect the presence of a file virus and prevent
its spread. The process interactions are modeled as
the plant DFSA G and the control specifications
(that constrain the plant) are represented by another
DFSA S that has the same event alphabet X~ as G.
The parallel combination of S and G gives rise to a
DFSA S/G, which is the closed loop system model
under the supervisory control. This paper formulates

the plant DFSA G and a control DFSA S based on
the information generated from a set of 30 file
viruses.

2.2 Model Formulation

A discrete-event system is driven by instantaneous
occurrences of events. Using the Ramadge and
Wonham framework (P.J.Ramadge, W.M.Wonhanm,
1987), a discrete event system to be controlled called
a plant, is modeled by a trim deterministic finite state
automaton (DFSA) G = (Q, 2, 3,490, Qm), Since the

sequence of system calls made by a running process
can be represented as discrete events, a computer
executable process is considered to be a discrete-
event system that can be modeled as a DFSA, where
the set O of states represents the status of an

executable while executing; 2. is the (finite) alphabet
of events which would cause the state transitions;

1169

8:0x > — Q is the state transition function; ¢ is
the initial state of the model; and Q,,is the set of

marked states that represents certain important stages
in process execution.

Upon formulation of a DFSA model for operations of
an executable, we derive a regular language L(G)
that is acceptable by the model.

G AL =
The marked language of G would then be
represented as L, (G), where

Lm(G)= {s ey’ |5(q0,s)e Qm} c L(G)

The current state of the model corresponds to the
status of a computer program in execution. The
system calls are the basic events that cause the state
transition in the plant DFSA model. The event
alphabet is divided into two disjoint subsets
Ycand>, ., controllable and uncontrollable event

sets respectively. A supervisor controls the plant by
disabling or re-enabling the controllable events
depending on the control policy. Uncontrollable
events cannot be disabled by the supervisor.

Figure 1 shows the plant DFSA model representing
the process interactions. In most cases, the system
calls are events that trigger state transitions. The
events belonging to the alphabet X are listed in
Table 1. We map the system calls into events and
some of the events consist of more than one system
call. The states are listed in Table 2. State 3 is the
good marked state where the system wants to go.
States 8, 9, 10, 11 and 12 are the bad marked states
where the system does not want to terminate. State 1
is the idle state, i.e., the state when the process is not
running. Once the process is started, it transits to state
2. At state 2, if the event happens to trigger the state
transition to state 4, and then state 5°, 7° and §’, then
there is a probability that the process contains

Figure 1: The unsupervised process.

Table 1: List of events in the DFSA

Table 2: List of States in the DFSA

State

Number Description

EK](:)m Event Name Type Description
a start c start executing a process
findfirst Find and open the first file.
o getmod Get time stamp and the
2 chmod uc mode of the file, and
open change the mode to write-
get_time able.
a3 read uc Read the file
o Iseek/ ue Specify the offset of a file
¢ write from a certain position
Os set_time uc Set the time stamp
o close ue Change the file mode and
e chmod close the file
a; chdir uc Change directory
Findnext
getmod
O3 chmod uc Find next file
open
get_time
. Jump to the normal part of
G Jump ¢ the executable
[terminate c Terminate running process
on process-end uc A finish executing signal
0 delete/recover c Recover the infected file,
2 if impossible, delete it
At a certain state, it
represents all the other
common
(2%} system call uc system calls except the
Y one(s) we specified at that
state.
Oia chmod un Change the file mode
. Continue the process
Ois continue c

without interference

Idle and no process running

Start execution

Normal running condition

File Opened

File Read

Time stamp is set before the file is written

File is written (decision pending)

File is written (continued)

Time stamp is set after the file is written (decision
pending)

Time stamp is set after the file is written
(continued)

File closed without changing the mode (decision
pending)

File closed without changing the mode
(continued)

Mode changed without closing the file (decision
pending)

Mode changed without closing the file
(continued)

File closed and mode changed (Virus is highly
possible) (decision pending)

File closed and mode changed (Virus is highly
possible) (continued)

Directory is changed (Virus is detected) (decision
pending)

Directory is changed (Virus is detected)
(continued)

13 Jumped to normal part of the execution

14 Execution ended

NN BN -

c: controllable uc: uncontrollable

malicious function; otherwise, it will come to state 3
and finally end at state 1 by event o). If it then
transits to state 11, there is a high probability that the
running process contains a malicious code. If it
transits to state 12, it is believed that the process
contains malicious function. At the bad marked
states, the supervisory actions are determined based

m\

o
2
g

. V’/
1 2 o
12 {/;%s /
-)@uﬁ ‘)
3 3 B

-

Figure 2: DFSA for Supervised Process.

1170

on the control specifications. It may disable some of
the controllable events and re-enable some other
controllable events to avoid further damage. For
example, the control specifications of the present
supervised plant in Figure 2 disable event 05 (i.e.,
continue the process without interference) when it
triggers the transition from state 9’ to state 9 and
from state 10’ to statel0.

3. SIMULATION RESULTS AND
DISCUSSION

Figure 3 presents the structure of the implementation
of the supervisory control system. There are three
main modules: (1) Sensor, (2) Event Generator, and
(3) Supervisor. The Sensor captures the system calls
and user actions when a process is running and Event
Generator teceives a system call as an input, it maps
the system call into an event and then feeds the event
to the Supervisor to trigger the state transition of the
DFSA. When the user receives the status information,
he/she terminates the process, or let it execute
without interference. The action of the user is also
captured by the Sensor and is mapped as an event (it
could be gy 019, 01 o1 0y5) by Event Generator. We
have created a data set of 20 benign executables and
60 malicious executables. The malicious executables
are generated by three tools, VCL, G2, and BW.

Supervisor

Event ||
Generator |

Status Information

) |
os i
E: Enable D: Disable
Steps:
1. Program executing.
2. Semsor sends the system calls and user
actions to Event Generator.
3. Event generator feeds an event to the
Supervisor to trigger the state transition.
4. When virus-like behavior is found,
Supervisor informs user.
5. User action.

Figure 3: The structure of the simulation system.

These tools are available at website:
http./fvx.netlux.org/dat/vet.shtml. A source file of
system calls is generated for each of the executable in
its execution phase by use of the trace tool. To
conduct simulation experiments, Sensor captures the
system calls from the source file one by one, and then
follows the steps shown in Figure 3.

When the simulation begins, a transition
automatically takes place from state 1 to state 2.
Similarly, when the simulation ends, the process
terminates on state 1 or state 14, depending on which
internal states it passes through. The top part of
Figure 3 shows how Event Generator maps the
system calls when it receives them from the Sensor.
Once an event is generated, Event Generator feeds
this information to the Supervisor to trigger the state
transition. These phenomena are explained by four
examples described below.

We illustrate the work of our system by three
representative examples out of all experiments we
did. In Example 1, all system calls are mapped to
event 03 so that the process stays at state 3, and
finally ends at state 1. In Example 2, the DFSA
model fails to detect a virus because Event Generator
also maps all the system calls to 03 according to the
event definition in Table 1. The model works quite
well on Example 3 and Example 4 for simulation on
viruses generated by BW and G2, respectively. As
the system transits to a user-pending state, and the
user action is mapped as 0ys, the process continues

running without interference. However, if 05 is
disabled, then it triggers the state transition from state
9’ to state 9 and from state 10° to state 10.
Consequently, further possible damage is avoided.

Simulation results are summarized in Table 3 to show
that the frequency of false negative is zero, and that
the frequency of false positive is dependent on the
virus creation tool being used. It could detect classes
of viruses generated by G2 and BW very well and
can not detect with viruses generated by VCL tools.

Table 3: Simulation Results

. Virus or virus infected
Benign

programs
program
VCL BW G2
No. of 20 20 20 20
programs
Detected as 0 0 20 20

virus

1171

When all the sample programs are equally distributed
(i.e., the number of malicious programs generated by
each tool and the number of benign programs are the
same as Table 3 shows), the overall frequency of
correct detection is about 75%. The rationale for this
somewhat reduced frequency of correct detection is
that the sensitive-system calls do not fully cover all
categories of viruses. The results are very likely to
improve through more appropriate definition of
events.

4. SUMMARY AND CONCLUSIONS

This paper presents a novel approach based on
discrete-event supervisory control to detect and
prevent the spread of malicious executables. This
approach looks for virus-like behavior rather than
specific viruses. The simulation results show that this
is an effective method.

This work is a novel extension of the SCT theory
presented by Ramadge and Wonham (1987) for the
control of malicious executables. The supervisor
makes use of a feedback mechanism based on a
control policy and recognizes a (constrained legal)
language as a result of this feedback mechanism. This
paper models the execution of a process as a DFSA,
and models the system calls, made in executing the
process, as events that trigger state transitions. A
supervisor algorithm is then formulated to monitor
and control the process execution so that it could
prevent the spread of a malicious code after its
detection. Future work includes detailed event
definition so that our system can detect VCL and
other categories of viruses.

REFERENCES

Alan Solomon, Tim Kay (1994). Dr.Solomon’s PC
Anti-virus Book, published by Newtech, Oxford.

Bandouin Le Charlier, Morton Swimmer (1995).
Dynamic detection and classification of
computer viruses using general behavior
patterns. In Proceedings of Fifth International
Virus Bulletin Conference, p75 Boston,
September 20-22.

C.C. Michael, Anup Ghosh (2000). Using finite
automata to mine execution data for intrusion
detection: a preliminary report. Proc. RAID 2000
(Springer LNCS 1907), pp 66-79. Oct.

C. Wallace, P. Jensen, N. Soparkar (1996).
Supervisory Control of Workflow Scheduling. In
Proceedings of International Workshop on
Advanced Transaction Models and
Architectures, 1996, Goa, August — September.

Christina Warrender, Stephanie Forrest, Brak
Pearlmutter (1999). Detecting intrusions using
system calls: alternative data Models. In
Proceedings of the 1999 IEEE Symposium on
Security and Privacy, pages 133-145, IEEE
Computer Society.

Diomidis Spinellis (1994). Trace: A tool for logging
operating system call transaction. Operating
System Review, 28(4):56-63, October.
http://dmst.aueb.gr/dds/pubs/jrnl/1994-SIGOS-
Trace/html/article.html (Accessed March 22,
2002)

Eleazar Eskin, Wenke Lee (2001). Modeling system
calls for intrusion detection with dynamic
window sizes. In Proceedings of DISCEX II,

June, 2001.

G. Karsai, A. Ledeczi (2001). An approach to self
adaptive software based on supervisory control.
IWSAS 2001, Balatonfured, Hungary.

Koral Ilgun, Richard A. Kemmerer, Phillop A.Porras
(1995). State transition analysis: a rule-based
intrusion detection approach. IEEE Transactions
on software engineering, Volume 21, Number 3,
March.

1172

Matthew G. Schuliz, Eleazar Eskin, Erez Zadok, and
Salvatore J. Stolfo (2001). Data mining methods
for detection of new malicious executables. In
proceedings of IEEE Symposium on Security and
Privacy. Oakland, CA: May.

Nittida Nuansri, Samar Singh, Tharam S. Dillon
(1999). A process state-transition analysis and its
application to intrusion detection. ACSAC 1999,
p378-388.

PJ. Ramadge and WM. Wonham(1987).
Supervisory control of a class of discrete event
processes. SIAM J. Control and Optimization,
Vol.25, No. 1, January, 206-230.

R. Kumar, M. Fabian (1997). Supervisory control of
partial specification arising in protocol
conversion, 35" Allerton Conference on
Communication, Control and computing, 543-
552, Urbana-Champaign, Illinois.

Richard B. Levin (1990). The Computer Virus
Handbook, published by Osborne McGraw-Hill,
ISBN 0-07-881047-5

Sandeep Kumar, Eugene H.Spafford (1992). A
generic virus scanner in C++. The Proceedings
of the & b Computer Security Applications
Conference, IEEE Press.

Steven A. Hofmeyr, Stephanie Forrest, Anil
Somayaji (1998). Intrusion Detection using
sequences of system calls. Journal of Computer
Security 6(3): 151-180.

Steven T. Eckmann, Giovanni Vigna, Richard A.
Kemmerer (2000). STATL: An attack language
for state-based intrusion detection. In
Proceedings of the ACM Workshop on Intrusion
Detection, Athens, Greece, November,2000
ACM.

Wenke Lee, Salvatore J.Stolfo (1998). Data mining
approaches for intrusion detection. In
Proceedings of the Seventh USENIX Security
Symposium (SECURITY '98), San Antonio, TX,
January,1998.

Xi. Wang, A. Ray, S. Phoha and J. Liu. (2002). J-
DES: A Graphical Interactive Package for the
Synthesis and Analysis of Discrete Event
Systems. In Proceedings of American Control
Conference, Denver, Colorado, June.

